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ABSTRACT: Neural models for calculating the high performance large-scale computer resources and
bandwidth of electrically thin and thick rectangular a very large number of computations. Furthermore,
microstrip antennas, based on the multilayered most of the previous theoretical and experimental
perceptrons and the radial basis function networks, work has been carried out only with electrically thin
are presented. Thirteen learning algorithms, the MSAs, normally of the order ofh./)•d • 0.02, where h
conjugate gradient of Fletcher-Reeves, Levenberg- is the thickness of the dielectric substrate and Xd is the
Marquardt, scaled conjugate gradient, resilient wavelength in the substrate. Recent interest has
backpropagation, conjugate gradient of Powell-Beale, developed in radiators etched on electrically thick
conjugate gradient of Polak-Ribidre, bayesian substrates. The need for theoretical and experimental
regularization, one-step secant, backpropagation with studies of MSAs with electrically-thick substrates is
adaptive learning rate, Broyden-Fletcher-Goldfarb- motivated by several major factors. Among these is
Shanno, backpropagation with momentum, directed the fact that MSAs are currently being considered for
random search and genetic algorithm, are used to use in millimetre-wave systems. The substrates
train the multilayered perceptrons. The radial basis proposed for such applications often have high
function network is trained by the extended delta-bar- relative dielectric constants and, hence, appear
delta algorithm. The bandwidth results obtained by electrically thick. The need for greater bandwidth is
using neural models are in very good agreement with another reason for studying thick substrate MSAs.
the experimental results available in the literature. Consequently, this problem, particularly the
When the performances of neural models are bandwidth aspect, has received considerable
compared with each other, the best results for training attention.
and test were obtained from the multilayered
perceptrons trained by the conjugate gradient of In this paper, models based on artificial neural
Powell-Beale and Broyden-Fletcher-Goldfarb-Shanno networks (ANNs) are presented for the bandwidth of
algorithms, respectively, both electrically thin and thick rectangular MSAs.

Ability and adaptability to learn, generalizability,
1. INTRODUCTION smaller information requirement, fast real-time

operation, and ease of implementation features have
Microstrip antennas (MSAs) have become the made ANNs popular in the last few years [37-40].
favorite choice of antenna designers because they Because of these fascinating features, artificial neural
offer the attractive features of low profile, light networks in this article are used to model the
weight, low cost, conformability to curved surfaces, relationship between the parameters of MSA and the
ease of manufacture, and compatibility with measured bandwidth results.
integrated circuit technology [1-18]. A number of
methods [1-36] using different levels of In previous works [35,41-48], we also successfully
approximation have been proposed and used to introduced ANNs to compute the various parameters
compute the bandwidth of rectangular MSA, as this is of the triangular, rectangular and circular MSAs. In
one of the most popular and convenient shapes. These reference [35], the bandwidth of rectangular MSAs
methods can generally be divided into two groups: has been computed by using ANNs. In [35], only the
simple analytical methods and rigorous numerical multilayered perceptrons (MLPs) were used as the
methods. Simple analytical methods can give a good neural network architecture. However, in this paper,
intuitive explanation of antenna radiation properties. both the MLPs and the radial basis function networks
However, these methods do not consider rigorously (RBFNs) are used for calculating the bandwidth.
the effects of surface waves. Exact mathematical Furthermore, in [35], the four learning algorithms, the
formulations in rigorous methods involve extensive backpropagation (BP) [49], the delta-bar-delta (DBD)
numerical procedures, resulting in round-off errors, [50], the quick propagation (QP) [51], and the
and may also need final experimental adjustments to extended delta-bar-delta (EDBD) [52], are used to
the theoretical results. These methods also require train the MLPs. However, in this paper, thirteen
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learning algorithms, conjugate gradient of Fletcher-
Reeves (CGFR) [53], Levenberg-Marquardt (LM)
[54,55], scaled conjugate gradient (SCG) [56],
resilient backpropagation (RP) [57], Broyden- feed
Fletcher-Goldfarb-Shanno (BFGS) [58], conjugate pi
gradient of Powell-Beale (CGPB) [59,60], conjugate point
gradient of Polak-Ribirre (CGPR) [61], bayesian L L >
regularization (BR) [62], one-step secant (OSS) [63], conducting
backpropagation with adaptive learning rate "t
(BPALR) [61], backpropagation with momentum patch
(BPM) [61], directed random search (DRS) [64] and h
genetic algorithm (GA) [65,66] are used to train the substrate. .h

MLPs. The radial basis function network is trained by
extended delta-bar-delta (EDBD) algorithm. The coaxial ground
main aims of this paper are fee plane

"* to calculate the bandwidth of electrically thin
and thick rectangular MSAs by using the
MLPs and RBFNs architectures; Figure 1. Geometry of rectangular microstrip

"* to train the MLPs by the CGFR, LM, SCG, antenna.
RP, BFGS, CGPB, CGPR, BR, OSS,
BPALR, BPM, DRS, and GA, and to train the where s is voltage standing wave ratio (VSWR), and
RBFNs by the EDBD algorithm; QT is the total quality factor. The total quality factor,

"* to compare the bandwidth results of neural QT, can be written as

models presented in this paper with the
results of the conventional methods available 1 1 1 1 ii
in the literature; (2)

"* to compare also the bandwidth results of QT [Q, Q c 'd %

neural models presented in this paper with the
results of fuzzy inference systems [36] where the four terms represent the radiation quality

trained by the improved tabu search factor, the quality factors due to conductor loss,
algorithm (ITSA) [67], the modified tabu dielectric loss, and surface wave.

search algorithm (MTSA) [68] and the
classical tabu search algorithm (CTSA) Bandwidth was defined by Pozar [23] as the half-
[69,70], and with the results of the neural power width of the equivalent circuit impedance

models [35] trained by the BP, DBD, QP, and response. For a series-type resonance, this bandwidth

EDBD algorithms; is

"* to determine the most appropriate neural
model in calculating the bandwidth of BW= 2R (3)
rectangular MSAs; and dw

" to show the superiority of artificial Wr dXIWr
intelligence techniques such as neural

networks and fuzzy inference systems over where Z=R+jX is the input impedance at the radian
the conventional methods, resonant frequency w,. For a parallel-type resonance,

In the following sections, the bandwidth of the (3) is used with R replaced by G and Xreplaced by B,
MSAs, the ANNs, the MLPs and the RBFNs are where Y=G+jB is the input admittance at resonance.
described briefly, and the application of neural The derivative in (3) can be evaluated by calculating
networks to the calculation of the bandwidth of a the input impedance at two frequencies near
MSA is then explained, resonance and using a finite difference

2. BANDWIDTH OF A RECTANGULAR approximation. The resonant resistance, R, is given2. BNDWDTH OF A RECANGLAR by

MICROSTRIP ANTENNA

Figure 1 illustrates a rectangular patch of width W R = R, +Rd +R, +R (4)

and length L over a ground plane with a substrate of
thickness h and a relative dielectric constant e,. The where the four terms represent the radiation

bandwidth of this antenna can be written as [1] resistance, the equivalent resistance of the dielectric
loss, the equivalent resistance of the conductor loss,

s- 1 and surface wave radiation resistance. The certain
BW = (1) way of calculating the total quality factor and the

QT V• resonant resistance of both electrically thin and thick
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rectangular microstrip patch antennas involves the function and one output. The behaviour of a neural
complicated Green function methods and integral network is determined by the transfer functions of its
transformation techniques. These methods and neurons, by the learning rule, and by the architecture
techniques suffer from a lack of computational itself. The weights are the adjustable parameters and,
efficiency, which in practice can restrict their in that sense, a neural network is a parameterised
usefulness because of high computational time and system. The weighted sum of the inputs constitutes
costs. the activation of the neuron. The activation signal is

passed through a transfer function to produce the
In this work, a new technique based on the ANNs for output of a neuron. Transfer function introduces non-
solving this problem efficiently is presented. First, the linearity to the network. During training, the inter-
antenna parameters related to the bandwidth are unit connections are optimised until the error in
determined, then the bandwidth depending on these predictions is minimised and the network reaches the
parameters is calculated by using the ANNs. specified level of accuracy. Once the network is

trained, new unseen input information is entered to
The feeding method or position is not considered in the network to calculate the output for test. ANN
calculating the bandwidth because the feeding represents a promising modelling technique,
method or position does not effect the intrinsic patch especially for data sets having non-linear
bandwidth. The bandwidth of a patch is significantly relationships that are frequently encountered in
greater than that of a printed dipole, at least over the engineering. In terms of model specification, artificial
range for which the patch actually resonates neural networks require no knowledge of the data
(h<0. 12? 0, where 4 is the free space wavelength at source but, since they often contain many weights
the resonant frequencyfr). This fact is consistent with that must be estimated, they require large training
the antenna gain/bandwidth relation to antenna size. sets. In addition, ANNs can combine and incorporate
Therefore, the effect of the patch width W on the both literature-based and experimental data to solve
bandwidth of rectangular microstrip antennas must be problems.
taken into consideration in the bandwidth calculation
of these antennas. From the results of the methods There are many types of neural networks for various
available in the literature [1-36] we see that for a applications available in the literature [37-40,71].
given frequency, larger bandwidth is possible by RBFNs and MLPs are examples of feed-forward
choosing a thicker substrate and a wider patch. The networks and both universal approximators. In spite
results also indicate that a lower value of Er results in of being different networks in several important
a larger bandwidth. respects, these two neural network architectures are

capable of accurately mimicking each other [40].
It is clear from the methods and formulas presented
by [1-36] that only three parameters, h/.Xd, W, and the 3.1. Multilayered Perceptrons (MLPs)
dielectric loss tangent tan,6, are needed to describe the
bandwidth. The wavelength in the dielectric substrate, Multilayered perceptrons (MLPs) [40,49] are the

Xd, is given as simplest and therefore most commonly used neural
network architectures. They have been adapted for
the calculation of the bandwidth of the MSA. MLPs

S= 0 (5) can be trained using many different learning
r -e, TrFer algorithms [37-40,71]. In this paper, MLPs are

trained with the CGFR, LM, SCG, RP, BFGS,
where c is the velocity of electromagnetic waves in CGPB, CGPR, BR, OSS, BPALR, BPM, DRS, and
free space. GA. As shown in Figure 2, an MLP consists of three

layers: an input layer, an output layer and an
3. ARTIFICIAL NEURAL NETWORKS (ANNs) intermediate or hidden layer. Neurons (indicated in

Figure 2 with the circle) in the input layer only act as

ANNs are biologically inspired computer programs buffers for distributing the input signals xi to neurons
designed to simulate the way in which the human in the hidden layer. Each neuronj in the hidden layer
brain processes information. ANNs gather their sums up its input signals xi after weighting them with
knowledge by detecting the patterns and relationships the strengths of the respective connections wji from
in data and learn (or are trained) through experience, the input layer and computes its output yj as a
not from programming. An ANN is formed from
hundreds of single units, artificial neurons or functionfofthesum, viz.,
processing elements connected with weights, which
constitute the neural structure and are organised in yj =f(y WjiXi) (6)
layers. The power of neural computations comes from
weight connection in a network. Each neuron has f can be a simple threshold function, a sigmoidal or
weighted inputs, summation function, transfer



GULTEKIN, et al.: NEURAL NETWORKS FOR BANDWIDTH CALCULATION OF MICROSTRIP ANTENNAS 113

Calculation
Direction Outputs Y1 Y2 Yn

Oirtput Layer

X1dd X2 1 m (ffw d

1 i2e Hidden ]ae--

Inputs x1 x2 X.

Figure 2. General form of multilayered perceptrons.
Figure 3. Radial basis function network.

hyperbolic tangent function. The output of neurons in
the output layer is computed similarly. The output of an hidden layer is a function of the

distance between the input vector and the stored

Training a network consists of adjusting weights of centre and calculated as
the network using the different learning algorithms. A
learning algorithm gives the change Awji(k) in the 0N (8)

weight of a connection between neurons i and j at '=
time k. The weights are then updated according to the
following formula The learning consists of using a clustering algorithm

for determining the cluster centres (Ck) and a nearest
wji(k + 1) =wji(k) + Awji(k + 1) (7) neighbour heuristic for determining the cluster

centres. Linear regression, or a gradient descent

3.2. Radial Basis Function Networks (RBFNs) algorithm is used to determine the weights from the
hidden layer to the output layer. In this work, EDBD

An alternative network architecture to the MLP is the algorithm is used to train the weights of the layer.
RBFN [72-74]. A network with an internal
representation of hidden neurons, radially symmetric, 4. NEURAL NETWORKS FOR BANDWIDTH
is named as a RBFN. The topology of the RBFN is COMPUTATION
obviously similar to that of the three-layered MLP,
and the differences lie in the characteristics of the ANNs have been adapted for the calculation of the

hidden neurons. The structure of a RBFN is shown in bandwidth (BW) of electrically thin and thick

Figure 3. rectangular microstrip antennas. MLPs are trained
with the use of CGFR, LM, SCG, RP, BFGS, CGPB,

The construction of a RBFN in its most basic form CGPR, BR, OSS, BPALR, BPM, DRS, and GA

involves three entirely different layers. The input algorithms. RBFN is trained by using EDBD

layer is made up of source neurons. The second layer algorithm. For the neural models, the inputs are h/kd,
is a hidden layer of high dimension serving a W, and tan8, and the output is the measured
different purpose from that in a MLP. This layer bandwidth BW~m. A neural model used in calculating
consists of an array of neurons. Each neuron contains the BW is shown in Figure 4.
a parameter vector called a centre. The neuron
calculates the Euclidean distance between the centre For the MLPs trained by DRS and GA, input layer
and the network input vector, and passes the result has the linear transfer function, the hidden and output
through a non-linear function. The output layer is layers have the sigmoid function. For the MLPs
essentially a set of linear combiners and supplies the trained by the other learning algorithms, the input and
response of the network. The transformation from output layers have the linear transfer function and the
input layer to the hidden layer is non-linear, whereas hidden layers have the tangent hyperbolic function. In
the transformation from the hidden layer to the output the RBFNs, the sigmoid function was used for the
layer is linear, output layer. Training an ANN with the use of a

learning algorithm to compute the bandwidth
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Table 1. Measured bandwidth results and
dimensions for electrically thin and thick
rectan ular microstrip antennas.

Patc h ) Measured
f, (Hz) h/ (m, m tan8 [33,34]No (m) (mm) BWMm

W BW 1 0.17 7.740 0.0065 8.50 0.001 1.07

2 0.79 3.970 0.0155 20.00 0.001 2.20
3 0.79 7.730 0.0326 10.63 0.001 3.85

n 4 0.79 3.545 0.0149 20.74 0.002 1.95
5 1.27 4.600 0.0622 9.10 0.001 2.05
6 1.57 5.060 0.0404 17.20 0.001 5.10
7 1.57 4.805 0.0384 18.10 0.001 4.90*

Figure 4. Neural model for bandwidth computation. 8 1.63 6.560 0.0569 12.70 0.002 6.80
9 1.63 5.600 0.0486 15.00 0.002 5.70

involves presenting it sequentially with different sets 10 2.600 0.06 13.37 0.002 7.70
10 2.00 6.200 0.0660 13.37 0.002 7.70*

(h/kd, W, tanS) and corresponding measured values 11 2.42 7.050 0.0908 11.20 0.002 10.90
BWmE. Differences between the target output BWmE 12 2.52 5.800 0.0778 14.03 0.002 9.30
and the actual output of the ANNs are evaluated by a 13 3.00 5.270 0.0833 15.30 0.002 10.00
learning algorithm. The adaptation is carried out after 14 3.00 7.990 0.1263 9.05 0.002 16.00*
the presentation of each set (h/kd, W, tanS) until the 15 3.00 6.570 0.1039 11.70 0.002 13.60
calculation accuracy of the network is deemed 16 4.76 5.100 0.1292 13.75 0.002 15.90
satisfactory according to some criterion (for example, 17 3.30 8.000 0.1405 7.76 0.002 17.50
when the error between BWmE and the actual output 18 4.00 7.134 0.1519 7.90 0.002 18.20*
for all the training set falls below a given threshold) 19 4.50 6.070 0.1454 9.87 0.002 17.90
or the maximum allowable number of epochs or 20 4.76 5.820 0.1475 10.00 0.002 18.00
generations is reached. 21 4.76 6.380 0.1617 8.14 0.002 19.0,0

22 5.50 5.990 0.1754 7.90 0.002 20.00
The training and test data sets used in this paper have 23 6.26 4.660 0.1553 12.00 0.002 18.70
been obtained from the previous experimental works 24 8.45 4.600 0.2091 7.83 0.0.02 20.90
[33,34], and are given in Table 1. The 27 data sets in 25 9.52 3.580 0.1814 12.56 0.002 20.00
Table I were used to train the networks. 6 test data 26 9.52 3.980 0.2017 9.74 0.002 20.60
sets which are marked with an asterisk in Table 1 27 9.52 3.900 0.1976 10.20 0.002 20.30*
were used for test. The number of neurons in the 28 10.00 3.980 0.2119 8.83 0.002 20.90
hidden layers and train epochs for neural models 29 11.00 3.900 0.2284 7.77 0.002 21.96
presented here are given in Table 2. 10x7x8 in 30 12.00 3.470 0.2216 9.20 0.002 21.50
Table 2 means that the number of neurons was 10, 7, 31 12.81 3.200 0.2182 10.30 0.002 21.60
and 8 for the first, second, and third hidden layers, 32 12.81 2.980 0.2032 12.65 0.002 20.40
respectively. Initial weights of the neural models 33 12.81 3.150 0.2148 10.80 0.002 21.20*
were set up randomly. *Test data sets

5. RESULTS AND CONCLUSIONS When the performances of neural models presented in
this paper and in [35] are compared with each other,

The bandwidths calculated by using neural models the best results for training and test were obtained
presented in this paper for electrically thin and thick from the MLP network trained by the CGPB and
rectangular microstrip patch antennas are listed in BFGS, respectively, as shown in Table 5. However,
Table 3. For comparison, the results obtained by among the neural models, the highest accuracy in the
using the conventional methods [1,21,31-33], and the total absolute errors was achieved with the CGFR
neural models presented by [35] and the fuzzy algorithm. When the two heuristic approaches were
inference systems [36] are given in Table 4. EDBD, compared with each other, the results of DRS were
DBD, BP, QP, ITSA, CTSA, and MTSA in Table 4 found better than those of the GA. It is also clear
represent, respectively, the bandwidths calculated by from Table 5 that in most cases the results of neural
the neural models [35] trained by EDBD, DBD, BP, models presented in this paper are better than those of
QP, and calculated by the fuzzy inference systems the neural models presented by [35] and that the best
[36] trained by ITSA, CTSA, and MTSA. The total result in the total absolute errors is obtained from the
absolute errors between the computed and fuzzy inference systems trained by ITSA. However,
experimental results for neural models, fuzzy the train absolute error of the fuzzy inference systems
inference systems, and conventional methods are trained by ITSA is larger than that of the MLPs
listed in Table 5 and Table 6. trained by CGFR, LM, SCG, CGPB, and CGPR

algorithms.
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Table 2. The ANN configurations and the number of Academic Press, New York, Vol. 59, pp.139-
train epochs for neural models presented in this paper. 227, 1982.

5. R. E. Munson, "Microstrip Antennas," in
ANN Architectures/ Te numbe of the in Antenna Engineering Handbook, R.C. Johnson

Algorithms hidden layers epochs (Editor), Mc Graw-Hill, New York, 1983.
6. D. M. Pozar, Antenna Design Using Personal

CGFR lOx 7 x 8 2 500 Computers, Artech House, Dedham, MA,
LM 6x3 201 pp. 12 1- 126 , 1985 .
SCG l lx8x7 1 200 7. K. C. Gupta and A. Benalla (Editors),
RP 12 x 10 6 500 Microstrip Antenna Design, Artech House, MA,
BFGS 10x5 700 1988.
CGPB 7 x 7 x 4 1 500 8. W. F. Richards, "Microstrip Antennas," in

MLPs CGPR 7 x7 x4 1 500 Antenna Handbook, Y.T. Lo and S.W. Lee
BR 3 x 4 x 3 290 (Editors), Van Nostrand Reinhold, New York,
OSS 10x8x8 2500 1988.
BPALR 45 x 35 x 35 2500 9. J. R. James and P. S. Hall, Handbook of
BPM 45 x 35 x 35 5 000 Microstrip Antennas, IEE Electromagnetic
DRS 12x6 740 Wave Series, Peter Peregrinus Ltd., London,
GA 20 x 25 1 850 Vols. 1 and 2, No. 28, 1989.

RBFN EDBD 20 x 6 185 200 10. Y. T. Lo, S. M. Wright and M. Davidovitz,
"Microstrip Antennas," in Handbook of

It can be clearly seen from Tables 4 and 6 that the Microwave and Optical Components, K. Chang
conventional methods give comparable results-some (Editor), John Wiley and Sons, New York, Vol.
cases are in very good agreement with measurements, 1, pp.764-889, 1989.
and others are far off. When the results of neural 11. K. F. Lee and J. S. Dahele, "Characteristics of
models and fuzzy inference systems are compared Microstrip Patch Antenna and Some Methods of
with the results of the conventional methods, the Improving Frequency Agility and Bandwitdh,"
results of all neural models and fuzzy inference in Handbook ofMicrostrip Antennas, J.R. James
systems are better than those predicted by the and P.S. Hall (Editors), IEE Electromagnetic
conventional methods. The very good agreement Wave Series, Peter Peregrinus Ltd., London,
between the measured bandwidth values and the Chapter 3, Vol. 1, No. 28, 1989.
computed bandwidth values of neural models and 12. P. Bhartia, K. V. S. Rao and R. S. Tomar
fuzzy inference systems supports the validity of the (Editors), Millimeter-Wave Microstrip and
artificial intelligence techniques and also illustrates Printed Circuit Antennas, Artech House,
the superiority of artificial intelligence techniques Canton, MA, 1991.
over the conventional methods. 13. K. Hirasawa and M. Haneishi, Analysis, Design,

and Measurement of Small and Low-Profile
A distinct advantage of neural computation is that, Antennas, Artech House, Canton, MA, 1992.
after proper training, a neural network completely 14. D. M. Pozar and D. H. Schaubert (Editors),
bypasses the repeated use of complex iterative Microstrip Antennas-The Analysis and Design of
processes for new cases presented to it. For Microstrip Antennas and Arrays, IEEE Press,
engineering applications, the simple models are very New York, 1995.
usable. Thus the neural models given in this work can 15. J. F. Zurcher and F. E. Gardiol, Broadband
also be used for many engineering applications and Patch Antennas, Artech House, Norwood, MA,
purposes. 1995.

16. R. A. Sainati, CAD of Microstrip Antennas for
REFERENCES Wireless Applications, Artech House, Boston,

1996.
1. I. J. Bahl and P. Bhartia, Microstrip Antennas, 17. K. F. Lee and W. Chen, Advances in Microstrip

Artech House, Dedham, MA, 1980. and Printed Antennas, John Wiley and Sons,
2. J. R. James, P. S. Hall and C. Wood, Microstrip 1997.

Antennas-Theory and Design, Peter Peregrisnus 18. R. Garg, P. Bhartia, I. J. Bahl and A. Ittipiboon,
Ltd., London, 1981. Microstrip Antenna Design Handbook, Artech

3. G. Dubost, Flat Radiating Dipoles and House, Boston, 2001.
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1981. Capelle, "Calculation of the Bandwidth of

4. J. R. Mosig and F. E. Gardiol, "A Dynamic Microstrip Resonator Antennas," in Proc. of 9Ih

Radiation Model for Microstrip Structures", in European Conference, Brighton, England,
Advances in Electronics and Electron Physics, pp.1 16-119, Sept. 1979.



116 ACES JOURNAL, VOL. 18, NO. 2, JULY 2003, SI: NEURAL NETWORK APPLICATIONS IN ELECTROMAGNETICS

Table 3. Comparison of measured and calculated bandwidths obtained by using neural models presented in this
paper for electrically thin and thick rectangular microstrip antennas.

Measured Present Neural Models
Patc BWME (%) MLP RBFNPt [33,34] CGFRI LMI SCG RP IBFGSICGPBICGPRI BR I OSS BPALR BPMI DRS GA EDBD

1 1.070 1.069 1.071 1.071 1.070 1.070 1.070 1.070 1.070 1.067 1.071 1.068 1.400 1.573 1.048
2 2.200 2.199 2.200 2.200 2.201 2.202 2.200 2.200 2.200 2.203 2.200 2.201 2.182 2.620 2.292
3 3.850 3.850 3.850 3.850 3.850 3.850 3.851 3.850 3.850 3.853 3.837 3.840 3.336 3.288 3.849
4 1.950 1.949 1.950 1.949 1.950 1.952 1.950 1.950 1.950 1.948 1.945 1.949 1.951 1.943 1.899
5 2.050 2.050 2.050 2.050 2.051 2.048 2.050 2.050 2.050 2.049 2.061 2.062 2.210 2.120 2.077
6 5.100 5.101 5.100 5.100 5.099 5.100 5.099 5.100 5.100 5.100 5.097 5.100 5.223 4.816 5.024
7 4.900* 4.560 4.900 4.766 4.922 4.764 4.016 4.011 5.175 4.137 4.233 4.300 4.571 4.506 4.437
8 6.800 6.800 6.800 6.800 6.800 6.798 6.801 6.800 6.799 6.811 6.790 6.801 6.754 7.076 6.744
9 5.700 5.699 5.700 5.700 5.700 5.700 5.702 5.700 5.701 5.702 5.694 5.701 5.632 5.470 5.806
10 7.700* 7.811 7.763 7.862 8.132 7.639 7.719 7.691 7.869 7.760 7.705 7.536 7.891 8.061 7.968
11 10.900 10.899 10.901 10.903 10.900 10.926 10.900 10.900 10.900 10.910 10.902 10.906 11.285 11.250 11.080
12 9.300 9.299 9.299 9.305 9.299 9.301 9.300 9.301 9.302 9.271 9.301 9.298 9.425 9.451 9.471
13 10.000 10.001 10.001 9.999 10.001 9.999 9.999 9.999 9.998 10.016 9.980 9.997 9.983 9.864 9.813
14 16.000* 15.954 15.918 16.161 15.995 15.890 16.063 16.100 16.337 16.396 15.982 16.182 15.924 16.167 15.940
15 13.600 13.601 13.599 13.595 13.605 13.548 13.598 13.600 13.600 13.598 13.576 13.593 13.169 13.135 13.225
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18 18.200* 18.345 18.422 18.217 18.179 18.365 18.297 18.300 18.311 18.395 18.458 18.537 18.340 18.394 18.381
19 17.900 17.877 17.847 17.853 17.824 17.850 17.871 17.869 17.860 17.864 17.861 17.890 17.947 17.883 17.996
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Table 4. Bandwidths obtained from the conventional methods and artificial intelligence techniques available in
the literature for electrically thin and thick rectangula microstrip antennas.

Patch Measured Conventional Methods in the Artificial Intelligence Techniques in the Literature

No BWME (%) Literature Neural Models [35 Fuzzy Inference Systems [36]
[33,34] [21] [1] [31] [33] [32] EDBD DBD BP QP ITSA CTSA MTSA

1 1.070 0.82 0.84 0.30 1.20 0.26 1.081 1.068 1.178 1.271 1.070 1.070 1.070
2 2.200 1.45 2.03 0.87 2.78 0.75 2.193 2.197 2.304 2.117 2.200 2.200 2.200
3 3.850 2.99 3.76 1.88 5.03 1.64 3.840 3.854 3.670 3.753 3.848 3.850 3.850
4 1.950 1.29 1.69 0.72 2.46 0.61 1.948 1.948 1.905 2.034 1.950 1.959 1.950
5 2.050 1.54 1.90 0.72 4.09 0.84 2.046 2.047 2.117 2.612 2.051 2.050 2.050
6 5.100 4.21 5.14 2.67 6.46 2.35 4.945 5.340 5.211 4.837 5.101 5.100 5.100
7 4.900 3.96 4.87 2.51 6.17 2.20 4.916 4.898 4.831 4.854 4.899 4.900 4.895
8 6.800 5.98 6.70 3.69 8.12 3.43 6.824 6.788 6.887 6.757 6.775 6.595 6.798
9 5.700 4.76 5.69 3.02 7.12 2.78 5.679 5.718 5.822 5.783 5.699 5.676 5.711
10 7.700 7.29 7.81 4.41 9.16 4.20 8.006 7.865 7.727 7.730 7.759 7.877 7.769
11 10.900 11.31 10.88 6.39 11.72 6.50 10.858 10.901 11.040 10.998 10.906 11.217 10.896
12 9.300 9.14 9.26 5.36 10.42 5.26 9.336 9.287 9.155 9,085 9.255 9.476 9.287
13 10.000 10.30 10.14 5.88 11.15 5.83 9.990 10.000 10.092 10.131 10.003 9.860 9.994
14 16.000 18.42 15.64 9.41 15.16 10.36 15.975 15.862 15.940 15.851 16.005 15.998 16.139
15 13.600 13.84 12.75 7.53 13.14 7.90 13.607 13.601 13.528 13.388 13.598 13.174 13.600
16 15.900 18.06 15.73 9.35 15.11 10.50 15.881 15.917 15.994 16.100 15.914 16.050 15.905
17 17.500 15.29 18.48 8.39 17.00 11.28 17.523 17.480 17.349 17.264 17.450 17.442 17.324
18 18.200 13.62 20.09 8.15 17.77 12.18 181254 18.433 18.372 18.339 18.288 18.357 18.284
19 17.900 14.54 19.17 8.31 17.34 11.70 17,844 17.917 17.949 17.947 17.845 17.884 17.797
20 18.000 14.08 19.46 8.19 17.47 11.80 18.016 18.091 18.101 18.129 18.060 18.050 17.977
21 19.000 12.45 21.47 7.95 18.42 12.93 19.113 19.054 19.113 19.094 18.955 18.988 19.110
22 20.000 10.73 23.41 7.63 19.29 14.10 19,818 19.766 19.878 19.883 19.999 19.714 19.955
23 18.700 13.01 20.55 8.10 18.01 12.57 18.804 18.620 18.433 18.599 18.690 18.603 18.688
24 20.900 7.85 28.24 6.76 21.26 16.49 21.009 21.101 21.170 21.163 20.896 21.080 20.917
25 20.000 10.10 24.27 7.46 19.66 14.54 19.851 19.842 19.857 19.836 19.997 19.790 20.035
26 20.600 8.45 27.17 7.02 20.85 16.10 20.608 20.760 20.916 20.900 20.602 20.759 20.478
27 20.300 8.76 26.59 7.10 20.61 15.76 20.524 20.608 20.724 20.734 20.296 20.599 20.274
28 20.900 7.63 28.64 6.67 21.40 16.65 20.977 21.147 21.241 21.231 20.909 21.145 21.056
29 21.960 6.50 31.03 6.14 22.26 17.56 21.885 21.777 21.557 21.609 21.960 21.741 21.973
30 21.500 6.92 30.06 6.32 21.91 17.13 21.495 21.469 21.412 21.433 21.510 21.461 21.580
31 21.600 7.11 29.56 6.41 21.73 16.95 21.535 21.317 21.342 21.249 21.566 21.309 21.377
32 20.400 8.26 27.39 6.90 20.92 16.07 20.500 20.592 20.569 20.498 20.401 20.526 20.514
33 21.200 7.39 29.07 6.54 21.55 16.77 21.460 21.184 21.148 21.103 21.221 21.178 21.173

Table 5. Train, test and total absolute errors between the measured and calculated bandwidhs for
various neural networks and fuzzy inference systems.

Artificial Intelligence Leaming Train Absolute Test Absolute Total Absolute
Techniques Algorithms Errors (%) Errors (%) Errors (%)

CGFR 0.199 0.770 0.969
LM 0.194 0.815 1.009

SCG 0.174 1.017 1.191
RP 0.421 0.779 1.200

BFGS 0.824 0.726 1.550
CGPB 0.136 1.499 1.635

Present Neural MLP CGPR 0.141 1.546 1.687
Models BR 0.410 1.275 1.685

OSS 0.499 1.833 2.332
BPALR 1.345 1.048 2.393

BPM 1.229 1.383 2.612
DRS 5.044 1.288 6.332
GA 6.069 1.721 7.790

RBFN EDBD 3.633 1.330 4.963

Fuzzy Interference ITSA 0.384 0.178 0.562
Systems MTSA 1.270 0.350 1.620

[36] CTSA 3.435 0.657 4.092
EDBD 1.430 0.885 2.315

neuraluoe DBD 2.267 0.862 3.129
in the Literature MLP B .5 .0 .6

[35BP 4.158 0.804 4.962[3]QP 4.921 0.895 5.816
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Conventional 42. D. Karaboga, K. Guney, S. Sagiroglu and M.

Methods in [21] [1] [31] [33] [32] Erler, "Neural Computation of Resonant
the Literature Frequency of Electrically Thin and Thick

Rectangular Microstrip Antennas," lEE Proc.
Total absolute Microw. Antennas Propag., Vol. 146, No. 2,

deviations pp. 155-159, April 1999.
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measured Computation of Mutual Coupling Coefficient of
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31. D. R. Jackson and N. G. Alexopoulos, "Simple Conference on Neural Network and Brain

Approximate Formulas for Input Resistance, (NN&B'98), Beijing, China, pp.223-226, Oct.
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